MEMORIA DE CÁLCULO DE ESTRUCTURA

PISCINA CUBIERTA CLIMATIZADA EN EL POLIDEPORTIVO MUNICIPAL CARRÚS ESTE DE ELCHE.
INDICE

1. INTRODUCCIÓN (IDENTIFICACIÓN DEL PROYECTO ESTRUCTURAL DEL EDIFICIO) 4
 1.1. Nombre de la obra Proyectada y ubicación de la misma .. 4
 1.2. Promotor/a del Edificio ... 4
 1.3. Autor/a del Proyecto Arquitectónico del Edificio .. 4
 1.4. Autor/a del Proyecto Geométrico básico del soporte estructural del Edificio 4
 1.5. Autor/a del Dimensionamiento y cálculos estructurales del soporte estructural del Edificio 4
 1.6. Autor/a del Estudio y del Informe Geotécnico correspondiente sobre el lugar donde se ubica el edificio .. 4
2. FUNDAMENTOS NORMATIVOS Y CRITERIOS QUE SUSTENTAN Y JUSTIFICAN EL PROYECTO DEL SISTEMA ESTRUCTURAL DEL EDIFICIO .. 5
3. DESCRIPCIÓN BÁSICA RESUMIDA DEL EDIFICIO ... 6
4. DESCRIPCIÓN DEL SISTEMA ESTRUCTURAL DEL EDIFICIO .. 7
 4.1. Los soportes verticales .. 7
 4.2. Descripción de la estructura horizontal .. 8
 4.3. Descripción de la cimentación adoptada ... 10
5. ACCIONES CONSIDERADAS EN LOS CÁLCULOS ESTRUCTURALES 11
 5.1. Acciones permanentes (G) ... 11
 5.2. Acciones variables (Q) .. 11
6. HIPÓTESIS DE CÁLCULO Y COMBINACIÓN DE ACCIONES ... 15
7. CARACTERÍSTICAS DE LOS MATERIALES EMPLEADOS ... 16
8. COEFICIENTES DE SEGURIDAD EMPLEADOS EN LOS MATERIALES 17
9. PROCESO GENERAL DEL CÁLCULO DE ESFUERZOS REALIZADO EN LA ESTRUCTURA 18
 9.1. Introducción ... 18
 9.2. Determinación de Esfuerzos .. 18
 9.3. Redondeo de las leyes de esfuerzos en apoyos .. 21
 9.4. Cálculo dinámico para el sismo y estático para el viento .. 23
10. CÁLCULOS DE LAS DEFORMACIONES .. 24
11. COMPROBACIÓN Y DIMENSIONADO DE ELEMENTOS DE HORMIGÓN .. 25
11.1. Pilares y Pantallas .. 25
11.2. Forjados Reticulares ... 26
12. CRITERIOS GENERALES BÁSICOS APLICADOS EN EL DISEÑO Y DIMENSIONAMIENTO DE LA CIMENTACIÓN .. 28
12.1. Introducción ... 28
12.2. Descripción y construcción de la cimentación mediante losa. Criterios de dimensionamiento y cálculo ... 28
12.3. Muros de sótano ... 30
13. RESISTENCIA AL FUEGO DE LA ESTRUCTURA .. 32
14. CONSIDERACIONES CONSTRUCTIVAS .. 33
1. **INTRODUCCIÓN (Identificación del proyecto estructural del edificio).**

Con el objeto de poder identificar nítidamente el nombre, el lugar y los agentes que intervienen en el Proyecto Estructural que nos ocupa, tal y como prescribe el CTE, procedemos a su descripción pormenorizada.

1.1. **Nombre de la obra proyectada y ubicación de la misma.**

Piscina cubierta climatizada en el Polideportivo Municipal Carrús Este de Elche.

1.2. **Promotor/a del Edificio.**

Excelentísimo Ayuntamiento de Elche.

1.3. **Autor/a del Proyecto Arquitectónico del Edificio.**

D. Antonio Maciá Mateu, colegiado nº 5.520 en el Colegio Territorial de Arquitectos de Alicante.

1.4. **Autor/a del Proyecto Geométrico básico del soporte estructural del Edificio.**

D. Antonio Maciá Mateu, colegiado nº 5.520 en el Colegio Territorial de Arquitectos de Alicante.

1.5. **Autor/a del Dimensionamiento y cálculos estructurales del soporte estructural del Edificio.**

D. Antonio Maciá Mateu, colegiado nº 5.520 en el Colegio Territorial de Arquitectos de Alicante.

1.6. **Autor/a del Estudio y del Informe Geotécnico correspondiente sobre el lugar donde se ubica el edificio.**

CEYS (Cimentaciones especiales y sondeos, S.L.)
C/. Pau Casals, nº 6, Elche (Alicante)
Telf.: 96.568.56.05
Geólogo colegiado nº 5.538, Dña. Isabel Bueno Prieto.
2. FUNDAMENTOS NORMATIVOS Y CRITERIOS QUE SUSTENTAN Y JUSTIFICAN EL PROYECTO DEL SISTEMA ESTRUCTURAL DEL EDIFICIO.

• El diseño y cálculo, en definitiva, el Proyecto Estructural que nos ocupa, y que lógicamente servirá como base para la construcción del soporte funcional y operativo del Edificio anteriormente identificado, se basa en el cumplimiento estricto y pormenorizado de los ESTADOS LÍMITE ÚLTIMOS PRESTACIONALES, tanto en la situación de Servicio como de Rotura, tal y como prescriben el CTE y la norma EHE, con el objeto de garantizar la SEGURIDAD ESTRUCTURAL del mismo con la fiabilidad adecuada, según se describe específicamente en el CAPÍTULO-3 del CTE del Real Decreto 314/2006 del 17 de Marzo.

• Para conseguir lo anterior, el presente Proyecto Estructural se auxilia de los Documentos Básicos recogidos también en el propio CTE, sin que por ello se dejen de contemplar otros conceptos y criterios igualmente válidos cuando ello sea necesario, sin abandonar nunca los Niveles Prestacionales de seguridad exigidos por lo Estados Límites Últimos definidos a través de los coeficientes de seguridad y las limitaciones prescritas que se contemplan y exigen en el CTE y la EHE.

• Finalmente decir también, que el presente Proyecto Estructural contiene detalles constructivos específicos de las estructuras de hormigón armado de una complejidad justificativa imposible de cumplir plenamente bajo los criterios analíticos habitualmente empleados en la práctica cotidiana del cálculo estructural, pero los mismos han sido seleccionados, tras haberse comprobado reiteradamente hasta la saciedad su espléndido comportamiento en infinidad de obras construidas sin que hayan generado problemas de tipo alguno.
3. DESCRIPCIÓN BÁSICA RESUMIDA DEL EDIFICIO

Piscina cubierta climatizada situada en el Polideportivo Municipal de Camús Este de Elche. El programa se desarrolla en planta baja, existiendo sobre la zona de cafetería una pequeña planta alta que comunica visualmente con la piscina, el acceso a esta planta alta es a través de una escalera habiéndose previsto la posible colocación de un ascensor para acceso de minusválidos. En la planta sótano, se ubican los cuartos de instalaciones y el resto del sótano queda para una posible utilización de almacén municipal que en principio no estaba previsto realizar, pero debido a la existencia de relleno en el solar y la necesidad de eliminarlo para cimentar adecuadamente, se ha considerado conveniente la realización de este sótano.
4. DESCRIPCIÓN DEL SISTEMA ESTRUCTURAL DEL EDIFICIO

• La estructura del edificio se ha resuelto en hormigón armado, pudiendo ser descompuesta a efectos de su descripción en cimentación, soportes y forjados del tipo reticular.

Los aspectos básicos que se han tenido en cuenta a la hora de adoptar el sistema estructural antes mencionado son, principalmente: las resistencias mecánicas, la estabilidad, la seguridad, la durabilidad, la economía y la facilidad constructiva, respetándose y teniendo presente las condiciones del mercado y de la industria de la construcción disponible, así como las consideraciones geométricas funcionales y estéticas impuestas por la arquitectura diseñada.

• La descripción geométrica pormenorizada de la estructura figura en los planos adjuntos a esta memoria, y deberá ser construida y controlada siguiendo sus indicaciones y las normas expuestas en la Instrucción Española del Hormigón Armado EHE y CTE. Tanto la interpretación de planos como las normas de ejecución de la estructura, quedan supeditados en cualquier caso a las directrices y órdenes que durante la construcción de la misma imparta la Dirección Facultativa de la Obra.

• La ausencia o escasa aparición de cotas en los planos estructurales, salvo aquellas que se consideran imprescindibles para su correcta materialización constructiva con el rigor y la precisión necesaria, y por ello se hacen figurar en los mismos. Lo anterior exige necesariamente planos de replanteo estrictamente arquitectónicos para el correcto posicionamiento y construcción de las piezas estructurales. Son estos últimos los que lógicamente fijarán la geometría precisa de la obra, quedando a juicio de la Dirección Facultativa de la misma si las posibles variaciones que pudieran existir entre los planos estrictamente estructurales y los de replanteo arquitectónico, por motivo de ajustes funcionales finales u otras causas, son admisibles o deben ser reconsideradas en el análisis de la estructura. Las pequeñas variaciones (±10 cm) que pueden existir en las longitudes de las barras de flexión por esta causa, consideramos que carecen de trascendencia. La falta de cotas en los planos estructurales pretende subsanar errores, no invadiendo los ajustes finales de la obra que corresponden a la arquitectura para que la estructura no altere su funcionalidad.

Por consiguiente, la Dirección Técnica de la obra asume la responsabilidad de adecuar la geometría de la estructura y cimentación diseñada en los planos estructurales, a las geometrías arquitectónicas finalmente acopladas al solar disponible donde se alzará la obra.

4.1. Los soportes verticales

• Los soportes verticales de los edificios diseñados son pilares de hormigón armado y pilares de acero, cuyas geometrías y amaduras figuran correctamente especificadas en un plano adjunto para cada una de las plantas del edificio, siguiendo unos ejes cartesianos de referencia establecidos en las mismas.

• Las longitudes de las piezas y por tanto las dimensiones de sus amaduras, deberán deducirse de las distancias geométricas que existan entre los forjados que figuren en los planos de arquitectura, añadiéndoles el espesor de cada forjado y las longitudes
de solape \(l_0\) que figuran en el plano adjunto donde se describen y referencian, según el diámetro que dichas armaduras posean.

- Los soportes diseñados en hormigón armado deberán ser construidos mediante un encofrado estanco que evite las coqueras que suelen producirse en las esquinas de los mismos por fugas de la lechada del hormigón.

- El hormigón deberá colocarse mediante tongadas vibradas que no superen los 30 cm y, sería muy deseable que no se vertiese bruscamente desde la boca superior del encofrado, ya que se producen fuertes disgregaciones en el mismo; siendo recomendable en el caso de una puesta en obra del mismo por bombeo, que la manguera vaya de abajo hacia arriba a medida que se llena el pilar.

Cuando el hormigón se coloque con cazo y grúa, se recomienda el empleo de alguna pieza auxiliar que reduzca o elimine las segregaciones indeseables.

- La distribución de las armaduras en las caras de los soportes, como filosofía general, responde al criterio constructivo de total simetría, es decir, armaduras idénticas en todas las caras (opcionalmente, simétricas a 2 caras solamente); no obstante, se adjunta un plano donde quedan totalmente definidos los detalles constructivos a considerar en el ferrallado de los mismos.

- La separación de estribos deberá estar comprendida entre 12 y 15 veces el diámetro de la armadura más delgada del soporte (EHE, 42.3.1). Se adjunta en el mencionado plano, unos cuadros donde se especifican la separación y el tipo de estribos aconsejable en función del diámetro y el número de barras que posea el soporte de referencia.

4.2. **Descripción de la estructura horizontal**

La estructura horizontal se ha resuelto con un forjado de tipo reticular. El forjado pertenece a la familia de las losas de hormigón armado, no homogéneas, aligeradas y armadas en dos direcciones ortogonales. La estructura así formada, admite que sus flexiones puedan ser descompuestas y analizadas según las direcciones de armado y, forma con los soportes un conjunto estructural espacial, capaz de soportar las acciones verticales y horizontales a las que se encuentra sometida. Todas las piezas se discretizan para su análisis en barras lineales de manera aislada o formando parte de un emparrillado plano.

Los parámetros básicos que definen las características del forjado reticular del proyecto son:
Se recomienda que el mallazo inicialmente se apoye en los casetones luego se atén las barras de negativos al mismo y se calcíe posteriormente el conjunto justo antes de hormigónar.

No se recomienda la utilización de horquillas (aviones) para suspender las armaduras de flexión positiva, especialmente en los forjados de bovedillas recuperables, dado que pueden originar recubrimientos excesivos y puntos de corrosión.

NOTAS:
Un aumento de los recubrimientos por encima de los valores especificados en nuestros detalles, sólo pueden traer inconvenientes, especialmente por las pérdidas de brazos mecánicos resistentes que conlleva sin beneficios añadidos para nadie, por lo que recomendamos extremar la vigilancia durante la fase constructiva para garantizar los recubrimientos de cara a la durabilidad y seguridad global de la estructura.

4.3. Descripción de la cimentación adoptada.

- La cimentación se ha resuelto mediante zapatas aisladas, zapatas combinadas, zapatas corridas bajo muros de hormigón armado y losas macizas de hormigón armado para las pantallas del ascensor y fondos de piscinas.

Las losas de cimentación se proyectan siguiendo las recomendaciones de los manuales específicos y las NORMAS DE CIMENTACIONES SUPERFICIALES, con los siguientes criterios:

La resultante de cargas verticales cae dentro del núcleo central.

El espesor de las placas y las zapatas se elige con el criterio de que no exista punzonamiento de forma generalizada, aunque se admite la posibilidad de reforzar con armadura de punzonamiento algunas zonas bajo pilares.

- La elección de la cimentación se ha realizado en base al Informe Geotécnico, que se adjunta en el presente Proyecto, que recoge el análisis y estudio del suelo donde se apoya el edificio.

Los aspectos más importantes que caracterizan el suelo analizado en el estudio geotécnico se mencionan a continuación:

- Cota de cimentación: - 3,8 m. aproximadamente
- Estrato previsto para apoyar la cimentación: nivel 1 según estudio geotécnico (arcilla y limo marrón verdoso)
- Nivel freático: No

- Tensión admisible considerada en el suelo:
 \[s = 2 \text{ Kp/cm}^2 \text{para zapatas corridas, zapatas aisladas y zapatas combinadas.} \]
 \[s = 1,70 \text{ Kp/cm}^2 \text{para losas.} \]
- Peso específico del terreno 1.80 Tn/m³
5. ACCIONES CONSIDERADAS EN LOS CÁLCULOS ESTRUCTURALES.

Las acciones consideradas en los cálculos estructurales se han dividido en distintos grupos, en función de su carácter, para poder combinar correctamente los esfuerzos que producen en las distintas piezas estructurales siguiendo las directrices expuestas en la Norma EHE y el CTE.

5.1. Acciones permanentes (G)

- Las acciones permanentes se obtienen de forma automática de las geometrías de las piezas estructurales diseñadas tal y como figuran en los planos, multiplicándolas por el peso específico del material que las conforma y que han sido los siguientes.
 - Hormigón en masa: 24 KN/m³
 - Hormigón armado: 25 KN/m³
 - Acero: 76,9 KN/m³

Para las partes aligeradas de los forjados reticulares proyectados, se ha estimado los siguientes pesos:
 - Peso Propio forjado: 30 + 5: 5 KN/m²
 - Peso Propio formación cubierta piscina: 1 KN/m²

- Las cargas muertas consideradas se estiman uniformemente repartidas en las diversas plantas del edificio y han sido las siguientes:
 - Planta baja: ~2,0 KN/m²
 - Plantas de Piso (zona de acceso al público y formación de cubierta): ~2,0 KN/m², (5,0 KN/m² en zona de ubicación de máquinas aire acondicionado)
 - Planta de cubierta de piscina: 1,0 KN/m²
 - Escaleras: Formación Peldaños: 1,25 KN/m²

- Los cerramientos pesados de las fachadas se han estimado mediante unas cargas lineales permanentes actuando sobre los forjados donde descansan de valor entre 6 y 8 KN/ml, dependiendo de su composición.

5.2. Acciones variables (Q)

5.2.1. Cargas funcionales de servicio.

- Las acciones variables se deducen del Documento del CTE denominado SE-AE (2006), considerándose de forma general como cargas uniformemente distribuidas. No
obstante, también se han tenido presente las cargas concentradas que figuran en la segunda columna de la Tabla 3.1 del CTE que se adjunta.

<table>
<thead>
<tr>
<th>Categoría de uso</th>
<th>Subcategorías de uso</th>
<th>Carga uniforme [kN/m²]</th>
<th>Carga concentrada [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Zonas residenciales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A1 Viviendas y zonas de habitaciones en, hospitales...</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A2 Trasteros</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>Zonas administrativas</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C Zonas de acceso al público (con excepción de las superficies pertenecientes a las categorías A, B y D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1 Zonas con mesas y sillas</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C2 Zonas con asientos fijos</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C3 Zonas sin obstáculos que impidan el libre movimiento de personas como vestíbulos de edificios públicos...</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C4 Zonas destinadas a gimnasios y actividades físicas</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C5 Zonas de aglomeración (salas de conciertos, estadios...</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>Zonas comerciales</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D1 Locales comerciales</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D2 Supermercados, hipermercados o grandes superficies</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>Zonas de tráfico y de aparcamiento para vehículos ligeros (peso total < 30 tN)</td>
<td>2</td>
<td>20 (1)</td>
</tr>
<tr>
<td>F</td>
<td>Cubiertas transitorias accesibles sólo privadamente (2)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>G</td>
<td>Cubiertas accesibles únicamente para conservación (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1 Cubiertas con inclinación inferior a 26°</td>
<td>1 (4)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G2 Cubiertas con inclinación superior a 40°</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Sobre los bordes de los balcones volados se ha considerado una carga lineal en borde de 2 KN/ml.
- Se han tenido en cuenta las acciones sobre barandillas y elementos divisorios según la tabla 3.2 del CTE que se adjunta.

<table>
<thead>
<tr>
<th>Categoría de uso</th>
<th>Fuerza horizontal [kN/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5</td>
<td>3,6</td>
</tr>
<tr>
<td>C3, C4, E, F, Reba de los casos</td>
<td>1,6</td>
</tr>
</tbody>
</table>

En el caso que nos ocupa las cargas usadas han sido:

Sobrecarga Uso: Planta Baja = 5.0 KN/m²
Sobrecarga Uso: Planta Piso/Cubierta = 2.0 KN/m² (en zona de acceso restringido)
Sobrecarga Uso: Planta Piso/Cubierta = 5.0 KN/m² (en zona de acceso público)
Sobrecarga Uso Escaleras = 11.0 KN/m²
Sobrecarga Uso Cubierta Piscina = 1.0 KN/m²

5.2.2. Acciones del Terreno

Básicamente las acciones debidas a los empujes del terreno se deducen aplicando sobre las superficies donde el mismo actúa (muros de sótano enterrados), las presiones que se obtienen aplicando la siguiente expresión:
\[q \text{ KN/m}^2 = \gamma_e \cdot K_0 \cdot z \]

- \(\gamma_e \) - Peso específico del suelo
- \(K_0 \) - coeficiente de empuje al reposo (\(K_0 = 1 - \operatorname{sen} \theta \))
- \(z \) - profundidad del punto considerado
- \(\theta \) - ángulo de rozamiento interno del suelo

5.2.3. Acciones del Viento.

Considerando que el CTE abre la puerta prestacional y permite operar con criterios diferentes a los recogidos en sus documentos básicos, estimamos que la evaluación de las presiones dinámicas del viento pueden ser estimadas de manera mucho más precisas y realistas que las contempladas en dicho código, partiendo de los registros reales extremales del viento que se producen en nuestro territorio.

Así por ejemplo, si tomamos los registros de los últimos treinta años de Alicante publicados por la COPUT-Valenciana y obtenemos las funciones de densidad y distribución de Gumbel, obviando incluso las direcciones en las que se producen las ráfagas extremas conservadoramente, obtenemos que la velocidad media de las ráfagas extremas es de \(v_m = 77,16 \) Km/h y la velocidad característica de las ráfagas extremas (cuantil del 95%) sería de \(v_k = 124,9 \) km/h y si subimos el cuantil al 99%, la velocidad máxima de ráfagas extremas se incrementaría a \(v_{\text{max}} = 157,4 \) Km/h.

- Lo anterior nos conduce a considerar unas leyes de presiones dinámicas del viento comprendidas entre:

 Exposición NORMAL: \(P(x) = 0,7297z^2 + 14,343z + 40,979 \) daN/m²

 Exposición EXPUESTA: \(P_e(x) = 0,7691z^2 + 15,991z + 44,898 \) daN/m²

 Siendo \(z = \ln x \)

Dichas funciones se parecen razonablemente bien a las que podrían resultar de aplicar los criterios del EUROCÓDIGO DE VIENTO, fuente inspiradora del CTE, partiendo de unas velocidades de referencia realista, próximas a los \(77 \) Km/h, que son las que existen en la zona que nos ocupa.

- Asumir los valores de presiones dinámicas del viento que propugna el CTE, supone asumir que los vientos soplan de forma constante en España por encima de los 200 Km/h, lo cual es un auténtico desatino y no resulta ser verdad, tal y como demuestran los registros de extremales publicados por la COPUT-Valenciana.

- En los cálculos que nos ocupan, las fuerzas estáticas equivalentes del viento sobre cada planta a la altura considerada, se obtienen de multiplicar la superficie opaca del edificio considerada como zona Expuesta, actuando conservadoramente, de la forma siguiente:
Fi(xi) - Fuerza actuando a nivel de cada planta.
xi - altura total de la planta desde cota cero.
hi - Separación entre plantas.
Bi - Ancho del edificio al nivel xi considerado.
Pe(xi) - Presión del viento al nivel xi.

5.2.4. Acciones Accidentales (Acciones Sísmicas (Ad).

- Se ha tenido presente la Norma Sísmica NCSE-02 según propugna el CTE para la evaluación de las acciones sísmicas, que en nuestro caso se calculan para cada una de las plantas de forma automática mediante el programa de cálculo CYPECAD-2008 para efectuar un análisis dinámico espacial.

- La evaluación de las acciones sísmicas se realizan partiendo de los siguientes parámetros según NCSE-2002.

Tipo de estructura:

Aceleración sísmica básica (a_b) 0,15 g m / sg²
Coeficiente de contribución (K) 1
Coeficiente adimensional de riesgo (\(\gamma \)) 1
Coeficiente de tipo del terreno (c) = 1,3
Método de cálculo empleado: Análisis Modal-Espectral
Factor de amortiguamiento: 5%
Números de modos de vibración considerados: 6
Fracción cuasi-permanente de la carga: 0,5 (viviendas)
Coeficiente de ductilidad (\(\mu \)): 2 (baja)
Efectos de segundo orden (efecto P-\(\gamma \)): Amplificación 1,43.
6. HIPÓTESIS DE CÁLCULO Y COMBINACIÓN DE ACCIONES

En la verificación de los estados límites, se han contemplado las combinaciones de acciones establecidas en el CTE por las siguientes expresiones básicas.

- Para situaciones normales

\[G_{ij} \cdot G_{kj} + Q_{1,1} \cdot Q_{K,1} + \alpha_{ij} \cdot Q_{2,i} \cdot Q_{K,i} \]

- Para la situación accidental sísmica, todas las acciones variables concomitantes se tienen en cuenta con su valor casi permanente, según la expresión:

\[G_{K,j} + \alpha + \beta_{2,i} \cdot Q_{K,i} \]

- Los coeficientes parciales de seguridad (\(\gamma \)) y los coeficientes de simultaneidad (\(\psi \)) son los recogidos en la tabla 4.1 y 4.2 del CTE, que a continuación adjuntamos.

Tabla 4.1 Coeficientes parciales de seguridad (\(\gamma \)) para las acciones

<table>
<thead>
<tr>
<th>Tipo de verificación (1)</th>
<th>Tipo de acción</th>
<th>Situación persistente o transitoria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>desfavorable</td>
</tr>
<tr>
<td>Resistencia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanente</td>
<td>Peso propio, peso del terreno</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>Empuje del terreno</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>Presión del agua</td>
<td>1,20</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td>1,50</td>
</tr>
<tr>
<td>Estabilidad</td>
<td></td>
<td>desestabilizadora</td>
</tr>
<tr>
<td>Permanente</td>
<td>Peso propio, peso del terreno</td>
<td>1,10</td>
</tr>
<tr>
<td></td>
<td>Empuje del terreno</td>
<td>1,35</td>
</tr>
<tr>
<td></td>
<td>Presión del agua</td>
<td>1,05</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td>1,50</td>
</tr>
</tbody>
</table>

(1) Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C

Tabla 4.2 Coeficientes de simultaneidad (\(\psi \))

<table>
<thead>
<tr>
<th></th>
<th>(\psi_0)</th>
<th>(\psi_1)</th>
<th>(\psi_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobrecarga superficial de uso (Categorías según DB-SE-AE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Zonas residenciales (Categoría A)</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>• Zonas administrativas (Categoría B)</td>
<td>0,7</td>
<td>0,5</td>
<td>0,3</td>
</tr>
<tr>
<td>• Zonas destinadas al público (Categoría C)</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>• Zonas comerciales (Categoría D)</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>• Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría F)</td>
<td>0,7</td>
<td>0,7</td>
<td>0,6</td>
</tr>
<tr>
<td>• Cubiertas transitables (Categoría G)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cubiertas accesibles únicamente para mantenimiento (Categoría H)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nieve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• para altitudes > 1000 m</td>
<td>0,7</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>• para altitudes ≤ 1000 m</td>
<td>0,5</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>Viento</td>
<td>0,6</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>Temperatura</td>
<td>0,6</td>
<td>0,5</td>
<td>0</td>
</tr>
<tr>
<td>Acciones variables del terreno</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
</tr>
</tbody>
</table>

(1) En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.
7. CARACTERÍSTICAS DE LOS MATERIALES EMPLEADOS

- Las características de los materiales empleados en las distintas piezas que configuran la estructura portante del edificio, compuestas de hormigón y acero (en definitiva de hormigón armado), serán las que se establecen en la Norma EHE, tanto en lo que se refiere a sus componentes como a su puesta en obra, también se emplean pilares de acero laminado S275, de acuerdo con el DB SE-A.

- El control de las características que se exigen en el presente proyecto se ajustará a los criterios de normalidad establecidos en la EHE, y en el DB SE-A.

- Complementariamente a lo anterior, para el caso concreto que nos ocupa, las resistencias características del hormigón y el acero de la estructura portante del edificio, deberá ser:

CIMENTACIONES Y MUROS:
- Tipo de ambiente considerado: IIa
- Tipo de cemento a emplear: Normal
- Resistencia característica del hormigón (Fck): HA-25
- Resistencia característica del acero soldable (Fyk): B-500-S

FORJADOS Y VIGAS:
- Tipo de ambiente considerado: I
- Tipo de cemento a emplear: Normal
- Resistencia característica del hormigón (Fck): HA-25
- Resistencia característica del acero soldable (Fyk): B-500-S

PILARES:
- Tipo de ambiente considerado: I
- Tipo de cemento a emplear: Normal
- Resistencia característica del hormigón (Fck): HA-25
- Resistencia característica del acero soldable (Fyk): B-500-S

VASOS DE PISCINAS:
- Tipo de ambiente considerado: IV
- Tipo de cemento a emplear: Normal
- Resistencia característica del hormigón (Fck): HA-30
- Resistencia característica del acero soldable (Fyk): B-500-S

COMENTARIO SOBRE EL TIPO DE AMBIENTE CONSIDERADO Y CRITERIOS DE DURABILIDAD PREVISTOS:
Con los recubrimientos establecidos en el proyecto y las resistencias de los hormigones proyectados se cubren las exigencias de durabilidad prescritas en la EHE y el CTE para la estructura portante que nos ocupa, respetando el tipo de cemento especificado para cada una de las partes en las que se ha dividido la misma.

16
En el caso de elementos estructurales o decorativos de hormigón armado que queden vistos, (pérgola y pilares de cubierta, comisas, etc.) se dispondrán revestimientos superficiales definitivos y permanentes, con pintura impermeable al agua, tipo sikagard 670W elastocolor o similar. En tal caso, se podrá considerar, a todos los efectos relativos a la durabilidad que el hormigón está sometido a la clase de exposición IIa.

8. COEFICIENTES DE SEGURIDAD EMPLEADOS EN LOS MATERIALES

Con carácter general, siguiendo lo exigido en la EHE por el método de los estados límites últimos de rotura considerados en los cálculos dimensionales de las piezas de hormigón armado, se han considerado los siguientes coeficientes de seguridad minorando las resistencias características de los materiales:

- Para el hormigón: $c=1.5$
- Para el acero: $s=1.15$
9. PROCESO GENERAL DEL CÁLCULO DE ESFUERZOS REALIZADO EN LA ESTRUCTURA

9.1. Introducción

El proceso general de cálculo aplicado en el análisis de la estructura es el establecido en la Norma EHE y el CTE y conocido por el nombre de los estados límites. Dicho cálculo trata de reducir a un valor suficientemente bajo la probabilidad, siempre existente, de que sean alcanzados una serie de estados límites, entendiendo como tales aquellos estados o situaciones de la estructura o de una parte de la misma que de alcanzarse, pondrían la estructura o alguna de sus partes fuera de servicio.

En primer lugar se establece una geometría inicial de la estructura que se somete a las acciones consideradas en el proyecto; obtenidos los esfuerzos y deformaciones que originan las mismas mediante un análisis matricial, se procede a comprobar que los mismos pueden ser soportados con un dimensionamiento razonable y lógico de armaduras y, que las deformaciones no superan los valores considerados como admisibles en la normativa vigente, especialmente la Norma EHE y el CTE.

Todo lo anterior se realiza con las versiones últimas de los programas de Cype Ingenieros, S.A., adaptando los resultados que se obtienen en determinados puntos y zonas de la estructura, si fuese necesario por consideraciones de uniformizar resultados y criterios constructivos, mediante cálculos manuales sobre los dimensionamientos automáticos que ofrecen los programas.

Si la geometría inicialmente elegida no responde a las últimas consideraciones expuestas, se procede a modificar la misma y repetir el proceso de análisis hasta cumplirlas.

En definitiva, se comprobará y cumplirá finalmente en todas y cada una de sus partes y puntos de las piezas estructurales que:

\[\text{Ed} < \text{Rd} \]

Siendo:

\(\text{Ed} \), valor de cálculo de sus acciones y sus consideraciones

\(\text{Rd} \), el valor de cálculo de las resistencias.

El análisis de la estructura se basa en un cálculo matricial espacial-global de tipo lineal, discretizando la misma en elementos tipo barra, partiendo de las piezas reales: nervios, ábacos, zunchos y pilares.

9.2. Determinación de Esfuerzos.

El análisis de las solicitaciones en las estructuras de hormigón ha sido realizado mediante un cálculo espacial en 3D (CYPECAD), por métodos matriciales de rigidez, formando todos los elementos que definen la estructura: pilares, pantallas H.A., vigas y forjados.

En el análisis espacial de las estructuras de hormigón, se establece la compatibilidad de deformaciones en todos los nudos, considerando 6 grados de libertad, y se crea la
hipótesis de indeformabilidad del plano de cada planta, para simular el comportamiento rígido del forjado, impidiendo los desplazamientos relativos entre nudos del mismo. Por tanto, cada planta sólo podrá girar y desplazarse en su conjunto (3 grados de libertad).

Dado que la hipótesis anterior anula la posibilidad de obtener esfuerzos de compresión y tracción en las barras de los forjados, estos se evalúan manualmente a nivel global para estimar su importancia y obrar en consecuencia. En prácticamente la totalidad de los casos dichos esfuerzos carecen de trascendencia.

Cuando en una misma planta existan zonas independientes, se considerará cada una de éstas como una parte distinta de cara a la indeformabilidad de esa zona, y no se tendrá en cuenta en su conjunto. Por tanto, las plantas se comportarán como planos indeformables independientes.

Para todos los estados de carga se realiza un cálculo elástico y se supone un comportamiento lineal de los materiales y, por tanto, un cálculo de primer orden, de cara a la obtención de desplazamientos y esfuerzos, dado que al nivel práctico operativo del cálculo actual es el único camino que permite evaluar las combinaciones de esfuerzos de la norma EHE y el CTE de forma simple y sencilla.

La estructura se discretiza en elementos, barras y nudos de la siguiente manera:

Pilares: Son barras verticales entre cada planta, definiendo un nudo en arranque de cimentación o en otro elemento, como una viga o forjado, y en la intersección de cada planta, siendo su eje el de la sección transversal. Se consideran las excentricidades debidas a la variación de dimensiones en altura, en todas las barras que acometen los mismos.

Forjados reticulares: la discretización de los paños de forjado reticular se realiza en elementos finitos cuyo tamaño máximo es un tercio del intereje definido entre nervios de la zona aligerada. La dimensión de la malla se mantiene constante tanto en la zona aligerada como en la maciza, adoptando en cada zona las características mecánicas deducidas de su geometría. Se tiene en cuenta la deformación por cortante y se mantiene la hipótesis de indeformabilidad en su plano.

Pantallas H.A.: Son elementos verticales de sección transversal cualquiera, formada por rectángulos múltiples entre cada planta, y definidas por un nivel inicial y un nivel final. En una pared (o pantalla) una de las dimensiones transversales debe ser mayor que cinco veces la otra dimensión, ya que si no se verifica esta condición, realmente se puede considerar un pilar. Tanto vigas como forjados se unen a las paredes a lo largo de sus lados en cualquier posición y dirección.

![Ejemplos típicos de pantallas](image)
En las pantallas, la discretización efectuada es por elementos finitos tipo lámina gruesa tridimensional, que considera la deformación por cortante. Están formados por seis nodos con seis grados de libertad cada uno y su forma es triangular, realizándose un mallado de la pantalla en función de las dimensiones.

Se crea, por tanto, un conjunto de nudos generales de dimensión finita en pilares y vigas cuyos nudos asociados son los definidos en las intersecciones de los elementos de los forjados en los bordes de las vigas y de todos ellos en las caras de los pilares.

Dado que están relacionados entre sí por la compatibilidad de deformaciones se puede resolver la matriz de rígidez general y las asociadas y obtener los desplazamientos y los esfuerzos en todos los elementos.

A modo de ejemplo, la discretización sería tal como se observa en el esquema adjunto. Cada nudo de dimensión finita puede tener varios nudos asociados o ninguno, pero siempre debe tener un nudo general. Dado que el programa tiene en cuenta el tamaño del pilar, y suponiendo un comportamiento lineal dentro del soporte, con deformación plana y rígidez infinita, se plantea la compatibilidad de deformaciones.

Se consideran $\delta_{z1}, \theta_{x1}, \theta_{y1}$ como los desplazamientos del pilar O, $\delta_{z2}, \theta_{x2}, \theta_{y2}$ como los desplazamientos de cualquier punto E, que es la intersección del eje de la viga con la cara de pilar, y A_x, A_y como las coordenadas relativas del punto E respecto del O (Fig. 7.2.2).

Se cumple que:

$$\delta_{z2} = \delta_{z1} - A_x \cdot \theta_{y1} + A_y \cdot \theta_{x1}$$

$$\theta_{x2} = \theta_{x1}$$

$$\theta_{y2} = \theta_{y1}$$

De idéntica manera se tiene en cuenta el tamaño de las vigas, considerando plana su deformación.
9.3. Redondeo de las leyes de esfuerzos en apoyos.

Dentro del soporte se supone una respuesta lineal como reacción de las cargas transmitidas por el dintel y las aplicadas en el nudo, transmitidas por el resto de la estructura.

De este modo, según la figura adjunta tenemos:

Datos conocidos:
- momentos: \(M_1, M_2 \)
- cortantes: \(Q_1, Q_2 \)

Incógnita: \(q(x) \)

Se sabe que:
\begin{align*}
Q &= \frac{dM}{dx} \\
q &= \frac{dQ}{dx}
\end{align*}

Las ecuaciones del momento responden, en general, a una ley parabólica cúbica de la forma:
\[M = ax^3 + bx^2 + cx + d \]

El cortante es su derivada:
\[Q = 3ax^2 + 2bx + c \]
Imponiendo las siguientes condiciones de contorno:

\[\begin{align*}
 x = 0 & \quad Q = Q_1 = c \\
 x = 0 & \quad M = M_1 = d \\
 x = 1 & \quad Q = Q_2 = 3a^2 + 2bl + c \\
 x = 0 & \quad M = M_2 = a^3 + b^2 + cl + d
\end{align*} \]

se obtiene un sistema de cuatro ecuaciones con cuatro incógnitas de fácil resolución y a partir de aquí se obtienen las leyes de los redondeos que, adoptan la forma adjunta.

Estas consideraciones ya fueron recogidas por diversos autores (Branson, 1977) y, en definitiva, están relacionadas con la polémica sobre luz de cálculo y luz libre y su forma de contemplarlo en las diversas normas, así como el momento de cálculo a ejes o a caras de soportes.

La Norma EHE dice: «Salvo justificación» se considerará como luz de cálculo de las piezas la menor de estas dos longitudes:

A. La distancia entre ejes de apoyo

B. La luz libre más el canto

Pero suponiendo que los cálculos se realizan mediante pórticos a base de pilares y vigas idealizados como barras en sus ejes.

Sin embargo, con el programa de cálculo empleado CYPECAD, la estructura se idealiza en elementos lineales, de una longitud a determinar por la geometría real de la estructura y en este sentido cabe la consideración de tener presente el tamaño de los pilares, puesto que pueden ser varias las barras del emparrillado que acomete excéntricamente al nudo de dimensión finita que representa el nudo-pilar.

Por otra parte, la realidad física de la losa-pilar, algunas normas simplificadamente tratan de tenerla presente. Así, el Eurocódigo EC-2 permite reducir los momentos de apoyo en función de la reacción del apoyo y su anchura:

\[\Delta M = \frac{\text{reacción · ancho apoyo}}{8} \]

En función de que su ejecución sea de una pieza sobre los apoyos, se puede tomar como momento de cálculo el de la cara del apoyo y no menos del 65 % del momento de apoyo, supuesta una perfecta unión fija en las caras de los soportes rígidos.
En este sentido se pueden citar también las normas argentinas C.I.R.S.O.C., que están basadas en las normas D.I.N. alemanas y que permiten considerar el redondeo parabólico de las leyes en función del tamaño de los apoyos.

9.4. Cálculo dinámico para el sismo y estático para el viento.

• Para las acciones sísmicas, el método de análisis dinámico considerado en el programa general de cálculo que hemos empleado (CYPECAD) es el de "análisis modal espectral", para lo cual se han definido los parámetros básicos exigidos por NCSE - 02 en el apartado de acciones 5.4.

En dicho método, se calculan los desplazamientos modales máximos para cada modo de vibración y grado de libertad Uij de acuerdo al modelo lineal equivalente como:

\[U_{ij\pi} = \alpha \left(\frac{T_i}{2\pi} \right)^2 \cdot \frac{1}{\mu} \]

Conocido el número de modos, se determinan los periodos propios de cada modo y se resuelven.

Por último, se combinan los resultados obtenidos para cada modo calculado, de acuerdo con el método general C.Q.C. recogido en los comentarios de la Norma Sísmica y el libro de cálculo dinámico de Alex Barbat.

• Los esfuerzos generados por el viento, al margen de los efectos P - ? que se han tenido presentes y considerados en los análisis realizados, se han obtenido mediante un cálculo estático partiendo de las fuerzas estáticas equivalentes que suponemos inducen sobre el edificio las presiones dinámicas del viento antes mencionadas en el apartado de acciones 5.3. El efecto P - ? se considera incrementando los desplazamientos obtenidos en los cálculos con secciones brutas; por un factor amplificador de 1,43 para considerar una pérdida de rigidez de las secciones fisuradas del orden de un 30%, obteniendo los esfuerzos suplementario de dicho efecto de forma indirecta.

Cualquier aproximación dinámica al cálculo del viento del edificio que nos ocupa, dada su naturaleza, resulta imposible de ser realizado por el carácter de la información necesaria que nos permita el poderlo hacerse por carecer de los espectros necesarios.

Por otra parte, no se conocen patologías conocidas debidas al viento en los edificios por haber sido calculados de forma estática en vez de dinámicamente.

Las condiciones de rugosidad ambiental que rodea el edificio que nos ocupa, hace mucho más que improbable el régimen laminar necesario para que las circulaciones del viento induzcan problemas de inestabilidad crecientes en el mismo, bastando por ello, un cálculo estático convencional sin que sean de temer problemas patológicos por esta causa.
10. CÁLCULOS DE LAS DEFORMACIONES

- El diseño geométrico y el dimensionamiento realizado en todas y cada una de las piezas que componen la estructura portante del edificio, garantiza que las deformaciones que experimentará la misma se encuentran acotadas por debajo de los valores exigidos en la EHE y CTE para cumplir los estados límites últimos de servicio.

- En concreto se cumple que:

 - La flecha máxima en los forjados se encuentra acotada a valores por debajo de la L/250. El valor máximo detectado ha sido de:
 - Ante la dificultad teórica de obtener las flechas activas exactas en los forjados reticulares, las mismas se obtienen partiendo de los valores del cálculo lineal elástico que proporciona el programa CYPECAD, multiplicándolos por el factor 2,2. Los valores de esta forma se ajustan bastante a la realidad, tal y como se explica en las Tesis Doctorales de Dutari - J. Calavera y de F. Regalado sobre el cálculo de flechas en los forjados reticulares.

 La aplicación del criterio mencionado en el caso que nos ocupa conduce a valores que no supera la cota de L/500.
 - El desplome máximo del edificio de coronación con relación a su base por efecto de las cargas gravitatorias y el viento, no supera el límite de 1/500 de la altura total del edificio.
 - De igual forma el desplome entre sus plantas sucesivas se encuentra por debajo de la altura de la planta considerada dividida por 250.

NOTA: No obstante lo anterior, la experiencia demuestra que aún cumpliendo las exigencias de la EHE y el CTE no existe la seguridad total de que no puedan presentarse algunos daños de índole menor en las tabiquerías de las primeras plantas, por lo que se recomienda a la Dirección Facultativa que dirige la construcción del edificio, que adopte algunas disposiciones constructivas que minimicen el riesgo de dichos daños. Las recomendaciones más usuales a tener presente podrían ser:

 - No construir tabiques debajo de los 7 cm.
 - Ralentizar los tiempos constructivos.
 - Emplear ladrillos de formato pequeño.
 - Construir los acabados de arriba hacia abajo si fuese posible.
 - Solar antes de tabicar.
 - No retacar las tabiquerías hasta el final.
 - Apoyar los tabiques sobre un colchón de 5 mm de poliestireno de alta densidad, o dejarlo en su coronación.
 - Emplear tabiques prefabricados tipo Pladur o similares.
 - Dotar las tabiquerías de juntas verticales.
11. COMPROBACIÓN Y DIMENSIONADO DE ELEMENTOS DE HORMIGÓN

Para el dimensionado de las secciones de hormigón armado en estados límites últimos se emplea el diagrama parábola-rectángulo, con los diagramas tensión-deformación del hormigón. Para el acero se emplea su diagrama tensión-deformación de acuerdo con la normativa vigente.

En general se utilizan los límites exigidos por las cuantías mínimas indicadas por las normas, tanto geométricas como mecánicas, así como las disposiciones indicadas referentes a número mínimo de redondos, diámetros mínimos y separaciones mínimas y máximas.

11.1. Pilares y Pantallas.

11.1.1. Pilares.

El dimensionado de pilares se realiza en flexión-compresión esviada. A partir de unos armados, que pueden ser simétricos a dos caras, a cuatro o en un porcentaje de diferencia, se comprueba si todas las combinaciones posibles cumplen dicho armado en función de los esfuerzos. Se establece la compatibilidad de esfuerzos y deformaciones y se comprueba que con dicho armado no se superan las tensiones del hormigón y del acero, ni sus límites de deformación.

Se considera la excentricidad mínima o accidental, así como la excentricidad adicional de pandeo según la norma EHE, limitando el valor de la esbeltez mecánica, de acuerdo a lo indicado en la misma.

En cuanto al armado en vertical de un pilar, sus tramos último y penúltimo se aman según sus esfuerzos y de ahí hacia abajo, tramo a tramo, de forma que la armadura del tramo de abajo nunca sea inferior a la dispuesta en el tramo inmediatamente superior, aceptando el criterio de continuidad de barras.

11.1.2. Pantallas H.A.

Conocido el estado tensional, una vez calculados los esfuerzos y para cada combinación, se comprueban en cada cara de armado tanto en vertical como en horizontal las tensiones y deformaciones del hormigón y del acero para la armadura
dispuesta en las tablas, aumentándose de forma secuencial hasta que algún armado cumpla para todas las combinaciones. Asimismo se comprueba en el sentido transversal, calculándose el refuerzo si es necesario. Este proceso se repite para cada uno de los lados de la pantalla.

De acuerdo con la norma de aplicación se realizan las comprobaciones de cuantías mínimas y máximas, separaciones mínimas y máximas, así como las comprobaciones dimensionales de los lados (el ancho de un lado es superior a cinco veces su espesor), ya que si no lo verifica, se le aplican las limitaciones impuestas para pilares.

Se comprueban los límites de esbeltez para cada lado.

11.2. Forjados Reticulares.

La capa de compresión empleada para forjados es tal y como indica la EHE de 5 cm.

Los forjados reticulares (ver informe ACI-ASCE 442) actúan con una ductilidad y resistencia considerable a las cargas laterales en zonas sísmicas de intensidad, moderada-media, como resulta ser en el caso español: “Se puede incrementar la ductilidad a flexión de la losa mediante la adición de estribos a pequeños espaciamientos partiendo desde el paño de la columna, en dos dimensiones”. Actuando bien el forjado como diafragma de cortante, el mayor riesgo frente a cargas sísmicas se encuentra pues en el punzonamiento de las losas en el entorno de los pilares. Por esa razón, se especifican en los montajes de los ábacos unos estribados ? 8 a 15/20 cm, en zona sísmica que además de facilitar el ferrallado, aumentan la ductilidad y resistencia al sismo en su vertiente más peligrosa, sin que en nuestra opinión dicha armadura sea necesaria en general frente a las cargas gravitatorias.

11.2.1. Determinación de las armaduras.

Partiendo de los esfuerzos obtenidos en las barras virtuales del emparrillado, estos deben concentrarse y agruparse en lo que constituye los nervios reales de la placa, permitiendo al dimensionamiento de las armaduras en los mismos, con las formulaciones que establece para la flexión de las piezas de hormigón armado la EHE.

Las armaduras de positivos acaban en patillas en los zunchos de borde, cerrando circuitos de torsión tal y como recomienda el código ACI, si las armaduras de los estribos de los zunchos y vigas de bordes no son suficientes para absorber dichos esfuerzos.

El dimensionamiento de las armaduras de las vigas-zunchos, se realiza de manera directa partiendo de las envolventes de esfuerzos que proporciona el programa CYPECAD; amándose para resistir los estados límites últimos tanto longitudinal como transversalmente sin consideración adicional de tipo alguno.

11.2.2. Armadura Transversal.

- Calculando las armaduras necesarias en función de las distancias de nervios entre ábacos, en los planos se adjuntan unos criterios constructivos de estribos en los nervios que cubren adecuadamente los efectos cortantes en los mismos según se especifica
en la EHE. Por otra parte, también se realizan los cálculos con criterios diferentes más ajustados al comportamiento físico real de las placas, con el único interés de conocer realmente la situación física en la que se encuentran los nervios a cortante y los ábacos a punzonamiento.

El cálculo que realmente creemos mejor reflejar la realidad es considerar una resistencia al cortante del hormigón intermedia entre el carácter claramente conservador de la EHE y el \(2f_{cv} \) empleado en épocas anteriores.

Los valores tradicionales del cortante próximos a \(2f_{cv} \), están más acordes con los ensayos que hemos realizado y con otras normas internacionales. El valor realmente más preciso sobre el cortante a tener presente en los nervios de los forjados, lo estimamos en tomo a 1MPa para hormigones de \(f_{ck} = 25 \text{ MPa} \) en forjados con casetones de hormigón perdidos o recuperables con nervios troncocónicos, considerando en ambos casos como ancho del nervio el espesor mínimo de éste.

No obstante nuestros criterios particulares sobre el cortante, que sólo aplicamos de forma redundante, los detalles de armado de estribos que figuran en los planos, cubren el cortante cuando las luces de los nervios entre ábacos superan las distancias que se especifican en los mismos, estrictamente con criterios de la EHE.

• En cuanto al punzonamiento de los ábacos sobre los pilares, la experimentación e investigación conducen a considerar, una resistencia del hormigón a punzonamiento en tomo a \(2f_{cv} \), si bien ese factor ha de ser minorado por los mecanismos de torsión que implican la aparición de tensiones tangenciales en función de la situación que ocupen los pilares en la placa, o bien amplificando el esfuerzo de punzonamiento 1,15 para los pilares centrales; 1,40 para los medianeros y 1,50 para los de esquina, con resultados prácticos similares.

Somos partidarios de analizar el punzonamiento a 0,5 d de la cara de los soportes, tal y como sigue planteando el código ACI-318 a espaldas de EHE y EC-2, por ser más real y preciso, especialmente cuando existen huecos próximos a los pilares que invalida el criterio de situar el perímetro crítico a 2d. En el caso de no ser suficiente con la contribución del hormigón y el estribado de los ábacos, se procede a un aumento de dicha armadura de cortante en las piezas ferralladas que cruzan los soportes.

Así se han realizado los cálculos, no obstante, una vez comprobado el punzonamiento a 0,5 d; también se procede a calcularlo como indica la EHE, tal y como exigen los OCT y las Compañías de Seguro, cuyos resultados son los que realmente quedan recogidos en los planos constructivos.
12. CRITERIOS GENERALES BÁSICOS APLICADOS EN EL DISEÑO Y DIMENSIONAMIENTO DE LA CIMIENTACIÓN

12.1. Introducción

Todas las geometrías y formas de las piezas estructurales que configuran la cimentación han sido diseñadas teniendo presente el Informe Geotécnico elaborado para el presente Proyecto de tal forma, que las tensiones transmitidas al terreno se encuentren por debajo de las consideradas como admisibles en el mismo, y que sólo puedan verse superadas muy circunstancialmente en brevísimos periodos de tiempo, bajo acciones horizontales extremas de viento y sismo en no más de un 30%, en algunos de sus bordes y esquinas.

Con ello se garantizan que las distorsiones y asientos entre las diversas partes de los cimientos, no superan los valores tradicionalmente acertados en la Geotecnia, y que se encuentran recogidos en el CTE (Cimientos Tabla 2.2).

Los coeficientes de seguridad considerados en la cimentación, son lo expuestos en el CTE en su tabla 2.1.

La cimentación se ha resuelto mediante una losa maciza de hormigón armado y muros de sótano.

Las losas de cimentación se proyectan siguiendo las recomendaciones de los manuales específicos y las NORMAS DE CIMENTACIONES SUPERFICIALES, con los siguientes criterios:

• La resultante de cargas verticales cae dentro del núcleo central.

• El espesor de la placa se elige con el criterio de que no exista punzonamiento de forma generalizada, aunque se admite la posibilidad de reforzar con armadura de punzonamiento algunas zonas bajo pilares.

• La losa se asimila a un emparillado de barras, apoyada en un lecho elástico (Método del Módulo de Balasto), realizándose los cálculos con un programa integrado en CYPECAD. El método aplicado es el comúnmente aceptado en la literatura técnica para el análisis de losas de cimentación.

• Como armadura de montaje se disponen parrillas continuas superior e inferiormente cuya capacidad mecánica es equivalente a la cuantía mecánica mínima de la sección (0,04 * Uc), aunque si resulta excesivamente abundante para los niveles de esfuerzos que realmente existen en la placa, se reducen las parrillas a unas cuantías de armaduras acorde con los esfuerzos existentes, siempre por el lado de la seguridad.
En el caso de que los esfuerzos obtenidos superen esta cuantía se dispondrán barras de refuerzo que irán dispuestas bajo el pilar de la parrilla inferior y entre pilares en la parrilla superior.

Con el objeto de evitar roturas de la losa en los bordes, como zona más peligrosa, se refuerzan sus bordes con armaduras estribadas, en función del nivel de las tensiones cortantes y de torsión que existan en las zonas donde arrancan los pilares.

• Con el objeto de garantizar un buen comportamiento de la losa, comprobamos los armados de la misma con un método simplificado, sancionado experimentalmente en infinidad de lasas que se encuentran en servicio, sin haber manifestado problemas de tipo alguno y que se resume sucintamente en el croquis adjunto. Este tipo de cálculo manual, basado en establecer vigas virtuales en ambas direcciones, nos permite ajustar a criterios constructivos, los armados teóricos que automáticamente proporciona el programa de cálculos de lasas integrado en el CYPECAD.

Para la construcción de la losa recomendamos proceder a realizar un compactado superficial suficiente, que endurezca la capa superior del suelo excavado.

Una vez realizada la fase anterior, deberá protegerse el suelo expuesto a la intemperie lo más rápidamente posible con el hormigón de limpieza sobre el que iniciar el ferrallado de la losa. Cuanto más rápidamente se construya la cimentación sobre vaciado del terreno donde se apoyará la misma, mejor comportamiento cabe esperar de la misma. En principio los recubrimientos de los planos de armadura se estiman en 5 cm, teniendo el hormigón de limpieza como un recubrimiento suplementario.
Croquis básicos de las armaduras de la losa.

12.3. Muros de sótano

Los muros de sótano sobre los que descansan los pilares perimetrales del edificio, se calculan y arman esencialmente, teniendo presente que su forma de trabajo se asemeja bastante a las vigas de gran canto o vigas-pared, aunque sigan sirviendo de transmisores de las cargas que arranca en su coronación al terreno. A efectos de empuje de tierras se les considera arriostrados al forjado en su coronación. Se tendrá en cuenta lo anterior durante la ejecución de la obra apuntalándolos debidamente hasta que se haya realizado dicho arriostramiento, ya que de no ser así, nos encontraremos ante una estructura inestable.

La base de los muros se establece con la condición de que la tensión unitaria en el suelo no supere a la admisible.

Los esfuerzos principales, momentos flectores y esfuerzos cortantes, se calculan como si se tratase de vigas relación canto-luz normal.

También se han tenido en cuenta las compresiones localizadas que transmiten los pilares virtualmente embebidos en el mismo.

Se disponen armaduras longitudinales para resistir los momentos de cálculo, con la anchura “b” del muro y un brazo mecánico igual a:

\[
Z = 0'2(L + 1'5h) si \frac{L}{h} \leq 2'5 \\
Z = 0'5L si \frac{L}{h} < 1
\]
En el caso de que existan dos sótanos (como es éste), se consideran franjas verticales en los forjados para resistir los empujes de tierra y así se calculan los esfuerzos y se determinan las armaduras, considerando empujes al reposo de las tierras adyacentes a los mismos.

Si los pilares no superan el ancho “b” del muro, puede prescindirse de prolongar la armadura del pilar hasta la base del muro y, siguiendo la técnica de las pantallas, bastaría introducir los enanos de pilares 80-100 cm dentro del mismo. No obstante en este proyecto, las armaduras de los pilares se prolongan hasta los cimientos, tal como se puede ver en planos de detalle.

En general somos partidarios de minimizar al máximo el número de juntas en las estructuras y los muros, puesto que consideramos que así dotamos a las estructuras de mayor solvencia y favorecemos la durabilidad y el mantenimiento de los edificios, sin que sean de temer que las finas fisuras de retracción vertical que pudieran presentarse en los mismos, puesto que siempre serán menos llamativas y darán menor número de problemas que las juntas propiamente dichas, como demuestra sin el menor género de dudas el parque de viviendas construidas.

En el proyecto se han colocado las cuantías suficientes de armadura que se han demostrado necesarias y suficientes en cientos de proyectos sin menoscabo de la seguridad y la durabilidad, siguiendo las especificaciones de la EHE.

Teniendo presente las características del suelo son de prever asientos máximos tolerables y asientos diferenciales cuyo efecto sobre la estructura puede considerarse despreciable, puesto que todos ellos se encontrarán diluidos en su mayor parte durante el proceso constructivo.
13. RESISTENCIA AL FUEGO DE LA ESTRUCTURA

Dado el modelo de estructura elegido, formada por soportes de hormigón y forjados reticulares con bloques perdidos aligerantes también de hormigón, donde por problemas de durabilidad se establecen unos recubrimientos de las armaduras nítidamente reflejado en los detalles constructivos, se deducen de los mismos de forma indirecta unas resistencias al fuego según las Tablas recogidas en la EHE, CTE y EC, superiores a RF = 180 minutos. Las experiencias en el comportamiento al fuego de esta tipología estructural, así como los ensayos en cámaras normalizadas del forjado bajo la curva ISO 834 garantizan estabilidades que superan ampliamente los 180 minutos exigibles a nuestra estructura.
14. CONSIDERACIONES CONSTRUCTIVAS

- Si bien los procesos y criterios constructivos a tener presente en la construcción de la estructura se ajustarán a las especificaciones que al respecto se indican en la EHE, exponemos algunas consideraciones suplementarias, con el objeto de que se tengan presente en un intento de mejorar las prestaciones estructurales.

Como filosofía general en el control, se recomienda que los forjados y los pilares constituyan unidades independientes diferenciadas, con el objeto de poder identificar de forma más precisa en la estructura cualquier fallo en las cualidades exigidas a los hormigones que la configuran, y poder tomar las medidas oportunas correspondientes.

- Los recubrimientos especificados para los forjados, normalmente situados en un ambiente favorable (tipo-I), pierde su sentido cuando de los pilares se trata, puesto que al margen de que suelen ser las piezas más susceptibles de experimentar corrosiones en sus armarudas, en ellos un exceso de recubrimiento apenas penaliza su seguridad; y es por ello, que recomendamos construirlos siempre con recubrimientos del orden de los 4 cm, se encuentren estos donde se encuentren, cumpliendo así los requisitos exigidos en la EHE para ambientes desfavorables.

- No obstante lo anterior, si en la obra se detectan piezas que pueden estar expuestas a ambientes tipo II-b o III-a puede ser conveniente la aplicación de una capa de pintura anticarbonatación con lo que la durabilidad de las armarudas queda asegurada, sin tener que acudir a resolver el problema exclusivamente con recubrimientos por encima de los especificados, que sólo pueden generar problemas.

Queda como siempre bajo la supervisión de la Dirección Facultativa el cumplimiento de los citados valores o la aceptación o no de las recomendaciones anteriores.

- Formando parte del forjado reticular, queremos llamar la atención sobre los zunchos perimetrales y de huecos dispuestos en la estructura tal y como se refleja en los planos. Estos zunchos son los únicos elementos estribados y, tanto el solape como el cruce de los mismos en los embrochalamientos, debe efectuarse con sumo cuidado siguiendo los criterios que se exponen en el plano de detalles constructivos relativos a los mismos. La importancia de los zunchos en el esquema resistente de la placa es fundamental, dado que se le asignan esfuerzos de flexión, cortante y torsión. La dimensión mínima de la base de los zunchos deberá ser de 30 cm para todos los cantos de forjado. El armado viene detallado en planos.

La separación de los estribos en los zunchos menor que 0,5 d que se establece como prescriptiva en los comentarios al articulado, puede ocasionar deficiencias o excesos de seguridad en determinados casos, por lo que no se aplica obligatoriamente, estableciéndose aquellos que nos indica el cálculo en cada caso.

Los zunchos resultantes de los cálculos automatizados se analizan también manualmente y se estandarizan, con el objeto de facilitar su construcción tipificándolos, tal y como figura en un plano genérico.
Dado que estos se encuentran en los bordes y estos son los más propensos a la corrosión de sus armaduras, los recubrimientos se amplifican en los mismos teniendo presente el proceso constructivo y, figura un detalle constructivo particular en los planos.

- Los ábacos disponen de una armadura suplementaria a las armaduras de nervios que los cruzan, con el objeto de absorber los esfuerzos suplementarios que tienen lugar en los mismos.

Esta armadura de montaje viene definida de forma genérica en un plano de detalles constructivos y tienen la misión fundamental de absorber los picos de los momentos negativos existentes en la placa sobre los pilares. No obstante puede haber ábacos especiales, y estos se encuentran especificados y singularizados de forma concreta en los planos con su ferrallado correspondiente, anulando con ello los criterios generales que figuran para las restantes.

- Los soportes de la estructura deberán ser construidos mediante un encofrado estanco que evite las coqueras que suelen producirse en las esquinas de los mismos por fugas de la lechada del hormigón.

El hormigón deberá colocarse mediante tongadas vibradas que no superen los 30 cm y, sería muy deseable que no se vertiese bruscamente desde la boca superior del encofrado, ya que se producen fuertes disgregaciones en el mismo; siendo recomendable en el caso de una puesta en obra del mismo por bombeo, que la manguera vaya de abajo hacia arriba a medida que se llena el pilar.

Cuando el hormigón se coloca con cazo y grúa, se recomienda el empleo de una trompa de elefante para evitar segregaciones indeseables.

Independientemente de cualquier otra consideración, la cantidad de cemento mínima que deberá emplearse en la dosificación del hormigón será de 250 Kg/m³ y el tamaño máximo del árido puede oscilar entre 20 y 30 mm, mayor que el que debe emplearse en los forjados que, obligatoriamente, nunca será mayor de 20 mm, siendo aconsejable el uso de un árido de tamaño máximo 15 mm o menor en los mismos.

La distribución de las armaduras en las caras de los soportes, como filosofía general, responde al criterio constructivo de total simetría, es decir, armaduras idénticas en todas las caras (opcionalmente, simétricas a 2 caras solamente); no obstante, se adjunta un plano donde figura el cuadro de pilares y los detalles constructivos a considerar en el ferrallado de los mismos.

La separación de estribos deberá estar comprendida entre 12 y 15 veces el diámetro de la armadura más delgada del pilar (EHE, 42.3.1). Se adjunta en el mencionado plano, unos cuadros donde se especifican la separación y el tipo de estribos aconsejable en función del diámetro y el número de barras que posea el pilar.

Por el mismo motivo, los 50 últimos y la longitud de solape inicial (=60 cm) de todos los pilares, se proyectan con una concentración de estribos a una separación máxima de 10 cm. para los 50 cm. superiores y 6 cm. para la parte inferior.
Dada la gran variante de posibilidades que pueden presentarse en el estribado de las barras de un pilar cuando su número es elevado, la Dirección Técnica de la obra podrá considerar el que estime conveniente, al margen del que figura en los planos, siempre y cuando se cumplan las especificaciones que sobre los mismos fija la Norma EHE.

El solape de las armaduras de los pilares en cada planta se ajustará como mínimo a los cuadros de longitudes que figuran en el plano relativo al cuadro de pilares.

Las longitudes indicadas son para barras trabajando básicamente a compresión, habiéndose estimado que la estructura en cualquier momento puede experimentar una acción dinámica de viento o sismo, sin que dichas acciones consigan colocar al pilar en una tracción que supere al 50% de la sección.

Al conjunto de plantas de la estructura que puede ser construido de idéntica manera se le denomina, grupo de plantas, y los planos que lo definen, al margen del cuadro de pilares. Son tres:

El primero constituye el plano de replanteo de nervios, ábacos y zunchos, y también recoge en aquellos pilares donde sea necesario, las claves que permiten ferrallar el ábaco frente al punzonamiento, siguiendo las directrices del plano general de detalles constructivos relativos al mismo.

Los dos restantes planos contemplan la armadura de nervios en las dos direcciones ortogonales establecidas en la modulación de la planta.

Las armaduras de la placa debería hacerse siguiendo la secuencia que se indica a continuación y que también figura en los planos.
El forjado deberá ser construido replanteando los nervios sobre un encofrado continuo, donde deberán colocarse los casetones aligerantes en primer lugar y la ferralla a continuación. El hormigón que se vierta relleno los huecos entre casetones, deberá tener un cono de Abrams de 8, con una tolerancia de ±1 y un tamaño máximo de árido recomendado de 20 mm. La cantidad mínima de cemento por m³ del hormigón no debe ser inferior a 250 Kg. y se colocará "in situ" mediante vibrado con vibradores de aguja de alta frecuencia; acorde con la consistencia blanda exigida.

Los elementos horizontales del encofrado pueden ser retirados a los tres días, sin que ello suponga prescindir en ningún momento del apuntalamiento, que debe mantenerse, sino se toman medidas especiales y no existe un estudio específico de descimbrado, un tiempo estimado de 14 días y siempre y cuando la resistencia del hormigón de las probetas de control superen la resistencia que se especifica en el proyecto, al menos en un 90%.

El curado de la placa mediante riego pulverizado se prolongará durante un mínimo de 7 días, intensificándose el mismo si la temperatura ambiente es alta y si existe viento. También puede aplicarse en sustitución del riego, líquidos de curado que creen una lámina que impida la evaporación del agua de amasado.

En aquellos casos que por cualquier circunstancia, se produzcan fisuras de afogado o de retracción en el forjado, se limpiarán las mismas con aire a presión y se colmarán las mismas regándolas con lechada de cemento puro sin mayores complicaciones añadidas, puesto que carecen de trascendencia resistente y estructural digna de consideración.

Elche, Abril de 2.008.
El Arquitecto.

D. Antonio Maciá Mateu.